A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral ?-aryl alkylboronates

نویسندگان

چکیده

•Novel strategy for enantioselective remote hydrofunctionalization•Two simple ligands are better than a complex one: simplification of chiral ligand design•Formal asymmetric C(sp3)–H arylation•Practical, mild, and scalable process, excellent regio- enantioselectivities Selective functionalization aliphatic C–H bonds in fashion is synthetically valuable but challenging process. Enantioselective NiH-catalyzed hydrofunctionalization such an ideal process to construct molecules from easily accessed olefinic substrates. However, the traditional single-ligand catalytic requires single used efficiently promote both chain-walking coupling steps, which makes it difficult design. In this paper, we demonstrate that synergistic combination achiral cross-coupling offers novel general solution. It anticipated relay catalysis (L/L?) could inspire development organometallic multistep as well transformations. Ligand-controlled reactivity plays important role transition-metal catalysis, enabling vast number efficient transformations be discovered developed. generally all steps cycle (e.g., oxidative addition, reductive elimination), requirement design limits its generality, especially We hypothesized multiple with metal center might sequentially thereby combining complementary reactivities through ligands. With (L/L?), report here first highly hydroarylation By known nickel catalyst, enantioenriched ?-aryl alkylboronates rapidly obtained versatile synthetic intermediates formal C(sp3)-H arylation IntroductionOrganic synthesis has been revolutionized over past half-century by emergence catalysis. Many selective reactions privileged have reported using mono- or multimetallic (Figure 1A).1de Meijere A. Bräse S. Oestreich M. Metal-Catalyzed Cross-Coupling Reactions More. Wiley-VCH Press, 2014Crossref Scopus (446) Google Scholar these transformations, reaction occurs at suitable modulate steric electronic properties metal. Ligand architecture structure-activity relationship (SAR) studies long pursued continue aspects catalyst development.2Yoon T.P. Jacobsen E.N. Privileged catalysts.Science. 2003; 299: 1691-1693Crossref PubMed (1153) Traditionally, must effectively elimination). Given possibility exchange central metal, multiligand-based developed enhance performance. For example, assembling component form more reactive binary complexes [MLALB] improve selectivity.3Gennari C. Piarulli U. Combinatorial libraries catalysis.Chem. Rev. 103: 3071-3100Crossref (263) Scholar, 4Ding K. Synergistic effect library engineering reactions.Chem. Commun. (Camb). 2008; 44: 909-921Crossref (50) 5Reetz M.T. catalysis: mixing monodentate control enantio-, diastereo-, regioselectivity.Angew. Chem. Int. Ed. Engl. 47: 2556-2588Crossref (207) 6Biswas Weix D.J. Mechanism selectivity nickel-catalyzed cross-electrophile aryl halides alkyl halides.J. Am. Soc. 2013; 135: 16192-16197Crossref (403) 7Xiao Y.-L. Min Q.-Q. Xu Wang R.-W. Zhang X. Nickel-catalyzed difluoroalkylation (hetero)arylborons unactivated 1-bromo-1,1-difluoroalkanes.Angew. 2016; 55: 5837-5841Crossref (88) 8Sheng J. Ni H.-Q. Liu G. Li Y. X.-S. monofluoroalkylation boronic acids fluoroalkyl iodides.Org. Lett. 2017; 19: 4480-4483Crossref (40) 9Chen H. Jia Yu Qian Q. Gong allylation tertiary allylic carbonates.Angew. 56: 13103-13106Crossref (66) 10Zhang He Song P. Zhu Ligand-enabled migratory hydroamination: chain walking regiodivergent/regioconvergent sp3C–H amination.CCS 2021; 3: 2259-2268Crossref Fors Buchwald also demonstrated forming mixture [MLA MLB] broaden substrate scope each catalyst.11Fors B.P. S.L. A multiligand based Pd C?N reactions.J. 2010; 132: 15914-15917Crossref (213) Despite progress, utilizes rather on different stages remained largely unexploited,12Chen Peters J.C. Fu G.C. Photoinduced copper-catalysed amidation via cooperativity.Nature. 596: 250-256Crossref (41) 13Kim-Lee S.-H. Mauleón Gómez Arrayás R.G. Carretero Dynamic polar radical crossover expands alkyne carboboration secondary halides.Chem. 7: 2212-2226Abstract Full Text PDF (8) 14A Chinese patent (CN 11293975A) work filed Feb 4, 2021.https://worldwide.espacenet.com/patent/search/family/076243720/publication/CN112939750A?q=CN112939750AGoogle although pioneering works White co-authors serial Pd-catalyzed oxidation systems.15Chen M.S. Prabagaran N. Labenz N.A. M.C. Serial C-H oxidation.J. 2005; 127: 6970-6971Crossref (364) 16Fraunhoffer K.J. Sirois L.E. Macrolactonization hydrocarbon 2006; 128: 9032-9033Crossref (191) 17Young A.J. Allylic alkylation ?-olefins: resumed.Angew. 2011; 50: 6824-6827Crossref (108) note during our submitting, two independent elegant papers similar Cu Fu12Chen Arrayás,13Kim-Lee respectively. copper-catalyzed bisphosphine-based CuI acts photocatalyst activate electrophile, diamine-based CuII promotes C–N bond formation.12Chen contemporaneous disclosed another dynamic example was Cu-catalyzed B2pin2-carboboration alkynes halides. phosphine-based metalation, phenanthroline-based cross-coupling.Selective remains long-standing challenge.18Saint-Denis T.G. R.-Y. Chen Wu Q.-F. J.-Q. C(sp3)?H activation transition 2018; 359: eaao4798Crossref (306) The alkene walking19Larionov E. Mazet Well-defined hydrides isomerizations.Chem. 2014; 9816-9826Crossref 20Vasseur Bruffaerts Marek I. Remote isomerization.Nat. 8: 209-219Crossref (322) 21Sommer Juliá-Hernández F. Martin R. Walking metals functionalization.ACS Cent. Sci. 4: 153-165Crossref (255) 22Janssen-Müller D. Sahoo B. Sun S.-Z. Tackling sp3C?H Ni-catalyzed “chain-walking” reactions.Isr. 2020; 60: 195-206Crossref (81) 23Hilton M.J. L.-P. Norrby P.-O. Y.-D. Wiest O. Sigman Investigating nature palladium redox-relay Heck alkenyl alcohols.J. Org. 79: 11841-11850Crossref (78) 24Chen Z.-M. Guo J.-Y. Loch Deluca R.J. Palladium-catalyzed alkenylation alkenylbenzene derivatives.Chem. 2019; 10: 7246-7250Crossref 25Goetzke F.W. Hell A.M.L. van Dijk L. Fletcher S.P. approach cyclobutanes.Nat. 13: 880-886https://doi.org/10.1038/s41557-021-00725-yCrossref (9) 26For hydrofunctionalization, see Refs 27–44.Google 27Buslov Becouse Mazza Montandon-Clerc Hu Chemoselective hydrosilylation catalyzed pincer complexes.Angew. 2015; 54: 14523-14526Crossref (187) 28He Cai Mild regioselective benzylic functionalization: proximal olefins.J. 139: 1061-1064Crossref 29Juliá-Hernández Moragas T. Cornella carboxylation halogenated hydrocarbons carbon dioxide.Nature. 545: 84-88Crossref (271) 30Gaydou Site-selective unsaturated CO2 water.J. 12161-12164Crossref (184) 31Chen Y.-M. olefin enabled situ generation NiH.J. 13929-13935Crossref (151) 32Zhou hydroalkylation: C(sp3)?H alkenes.Angew. 57: 4058-4062Crossref (103) 33Xiao Ye sp3 amination alkenes nitroarenes.Chem. 1645-1657Abstract (102) 34Sun Börjesson Martin-Montero ?-haloboranes 140: 12765-12769Crossref (119) 35Zhang Nickel-catalysed hydrothiolation thiols.Nat. 1752Crossref (72) 36Zhang Han Rapid access functionalized boronates boron-containing 58: 13860-13864Crossref (56) 37Sun Romano deaminative 141: 16197-16201Crossref (100) 38Li Luo Peng Zhao W. Pang Deng Bai Lan Yin Reaction mechanistic insights Suzuki–Miyaura cross-coupling.Nat. 11: 417Crossref (55) 39Kumar G.S. Peshkov Brzozowska Nikolaienko Rueping electrochemical reduction.Angew. 59: 6513-6519Crossref (74) 40He arylborons.Angew. 9186-9191Crossref (48) 41Yu Rajasekar Fang hydrocyanation nonconjugated dienes.Angew. 21436-21441Crossref (39) sequential cross-coupling42Tasker S.Z. Standley E.A. Jamison T.F. Recent advances homogeneous catalysis.Nature. 509: 299-309Crossref (1375) 43Fu Transition-metal nucleophilic substitution reactions: alternative SN1 SN2 processes.ACS 692-700Crossref (296) 44Poremba K.E. Dibrell S.E. Reisman reactions.ACS Catal. 8237-8246Crossref (178) 45For recent examples olefins, 46–51.Google 46Lu Xiao Z. Su Yi Practical carbon–carbon formation olefins hydrocarbonation.Nat. 11129Crossref (152) 47Shevick Obradors Shenvi R.A. Mechanistic interrogation Co/Ni-dual hydroarylation.J. 12056-12068Crossref (106) 48Nguyen Chong Lalic anti-Markovnikov alkenes.Chem. 3231-3236Crossref (58) 49Bera hydroalkylation esters.Angew. 13854-13859Crossref (57) 50Jeon Lee Seo Hong proximal-selective hydroamination alkenes.J. 142: 20470-20480Crossref (44) 51Li Z.-Q. Tran V.T. Gao Engle K.M. regiodivergence hydroalkenylation carboxylic acids.Angew. 23306-23312Crossref (29) provides direct products readily accessible alkenes. classical fixed supporting can cross-coupling. This results no successful precedent levels NiH chemistry 1B). To overcome issue, envisaged general, modular solution realized 1C). Firstly, should only one phase cycle. Ideally, chain-walking, Secondly, undergo catalyst. Lastly, would powerful if known, structurally directly combinatorial screening. successes chemistry52For 53–70.Google 53Wang Catalytic enantioconvergent electrophiles olefins.Nature. 563: 379-383Crossref (181) 54Zhou racemic ?-bromo amides.Angew. 1754-1758Crossref (94) 55Chen Y.-G. Shuai X.-T. Y.-Q. Yang Q.-L. Qiu Mei T.-S. styrenes.J. 3395-3399Crossref 56Lv X.-Y. Fan L.-J. Xie J.-H. Zhou styrenes 1,3-dienes arylboronic acids.CCS 1: 328-334Crossref (63) 57He S.-J. J.-W. Z.-Y. X.-X. Lu ?-heteroatom phosphorus sulfur electrophiles.J. 214-221Crossref (67) 58Yang Z.-P. Convergent esters dialkyl carbinols.J. 5870-5875Crossref 59He Enantio- vinylarenes iodides.Angew. 21530-21534Crossref 60Bera Mao C(sp3)–C(sp3) non-activated hydride catalysis.Nat. 270-277Crossref (49) 61Shi Xing L.-L. W.-B. Shu Regio- hydroalkylation, hydrobenzylation, hydropropargylation acrylamides ?-tertiary 1599-1604Crossref (42) 62Cuesta-Galisteo Schörgenhumer Wei Merino Nevado ?-arylbenzamides.Angew. 1605-1609Crossref (53) 63Qian Bera Chiral amine enecarbamates.J. 143: 1959-1967Crossref 64Wang Nie Chang Z.-A. Y.-F. enamides enecarbamates amines.Nat. 12: 1313Crossref (47) 65Wang Z.-L. D.-G. Tian NiH-Catalyzed hydrocarbonation enol ethers.CCS 727-737Crossref (13) 66Wang J.-X. T.-Y. Meng B.-H. amines alcohols hydroalkylations.Nat. 2771Crossref (38) 67Jiang Xue Duan Gui hydroalkynylation bromoalkynes.Nat. 3792Crossref (19) 68Zhou ?,?-unsaturated amides regio-reversed enantiodifferentiating syn-hydronickellation.ACS 8766-8773Crossref (20) 69Chen multicomponent coupling: ?-chiral ketones hydrocarbonylation 14089-14096Crossref (26) 70Meng Facile arylamines, alkylamines hydroamination.Angew. 23584-23589https://doi.org/10.1002/anie.202109881Crossref allow us take advantage well-delineated use them together achieve aforementioned strategy.As initial demonstration concept, 1D). concept attractive route providing alkylboronates.71Wang Bachman Dudnik A.S. borylation electrophiles.Angew. 14529-14532Crossref 72Bergmann A.M. Dorn S.K. Smith K.B. Logan Brown M.K. Catalyst-controlled 1,2- 1,1-arylboration ?-alkyl arenes.Angew. 1719-1723Crossref 73Wang Ding olefins.Nat. 951-958Crossref These compounds intermediates, C–B moiety variety stereospecific produce other molecules.ResultsReaction optimizationTo test hypothesis, began investigation system homoallyl acid ester (1a) methyl 4-bromobenzoate (2a) 2; Tables S8–S10). found (L) (from library) amino alcohol ((S)-L?) afforded desired product (3a) 70% isolated yield 93% enantiomeric excess (ee) regioisomer. 2, entry 1). Use source, NiBr2·dme led somewhat lower ee 2). Both necessary high enantioselectivity entries 3 4). amount reduced 1 mol % 5 mmol scale, slightly diminished were 6), demonstrating efficiency ((S)-L?). Various less effective 7 8), inferior 9–11). Evaluation silanes showed polymethylhydrosiloxane (PMHS) resulted 12). shown base KF proceed 13). improved addition LiI additive suppress reduction starting materials 14; Table S3), replacement solvent N,N-dimethylacetamide (DMA) tetrahydrofuran (THF) significantly yields decreased 15). iodide partner comparable 16). Equivalent when pinacol 17).Figure 2Variation parametersShow full captionYields determined GC n-dodecane internal standard. parentheses average runs (0.2 scale). rr refers regioisomeric ratio, representing ratio major sum isomers GC-MS analysis. HPLC analysis corresponding after ester.a8 used. bReaction scale. iBu, iso-butyl; tBu, tert-butyl; Bdmpd, 2,4-dimethylpentane-2,4-diol ester; Bpin, DEMS, diethoxymethylsilane; PMHS, polymethylhydrosiloxane; THF, tetrahydrofuran; DMA, N,N-dimethylacetamide.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Substrate scopeWith optimized conditions hand, generality explored remarkably broad. As 3A, terminal (1a–1f, 1k, 1l) (1g–1j) successfully underwent moderate good enantioselectivity. 1f, insensitive length (the distance boron) still observed. E Z alkenes, E/Z mixtures enantiomerically enriched smoothly, regardless position C=C double compound. Remarkably, heteroatomic substituent terminus (for ether 1i), migration toward boronate group subsequent ?-arylation preferred. Of particular relevance (1j), occurred preferentially ester-adjacent bond. Other Bpin (pinacol ester) (1d, 1i, 1k) Bmpd (2-methylpentane-2,4-diol (1l) compatible.Figure 3Scope alkenesShow captionUnder percent yield, (ee), (rr). Yield purified (0.20 experiments). ester. represents analysis.a4-Bromobenzotrifluoride bThe value without derivatization. cIsolated alcohol. dAryl eNiBr2?dme nNon, n-nonyl; nPent, n-pentyl; Bmpd, 2-methylpentane-2,4-diol TBS, tert-butyldimethylsilyl; Tf, triflyl.View (PPT)A wide array sterically differentiated substituted aryl- heteroaryl groups introduced heteroar

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indium-catalyzed intramolecular hydroarylation of aryl propargyl ethers.

Indium(III) halides catalyze efficiently the intramolecular hydroarylation (IMHA) of aryl propargyl ethers. The reaction proceeds regioselectively with terminal and internal alkynes bearing electron-rich and electron-deficient substituents in the benzenes and alkynes affording only the 6-endo dig cyclization product. Additionally, a sequential indium-catalyzed IMHA and palladium-catalyzed Sonog...

متن کامل

Nickel-catalyzed enantioselective arylation of pyridine†

We report an enantioselective Ni-catalyzed cross coupling of arylzinc reagents with pyridiniumions formed in situ from pyridine and a chloroformate. This reaction provides enantioenriched 2-aryl-1,2-dihydropyridine products that can be elaborated to numerous piperidine derivatives with little or no loss in ee. This method is notable for its use of pyridine, a feedstock chemical, to build a vers...

متن کامل

Selective, nickel-catalyzed hydrogenolysis of aryl ethers.

Selective hydrogenolysis of the aromatic carbon-oxygen (C-O) bonds in aryl ethers is an unsolved synthetic problem important for the generation of fuels and chemical feedstocks from biomass and for the liquefaction of coal. Currently, the hydrogenolysis of aromatic C-O bonds requires heterogeneous catalysts that operate at high temperature and pressure and lead to a mixture of products from com...

متن کامل

Gold-Catalyzed Hydroarylation of N-Aryl Alkynamides for the Synthesis of 2-Quinolinones.

A mild method for the synthesis of 2-quinolinones via hydroarylation of N-aryl alkynamides is reported. While traditional methods have relied on the use of strong Brønsted or Lewis acids, this report describes the development of mild reaction conditions that yield 2-quinolinones in good to excellent yield using a commercially available gold catalyst. Substrates bearing a variety of functional g...

متن کامل

Enantioselective cyanosilylation of ketones catalyzed by a chiral oxazaborolidinium ion.

The chiral oxazaborolidinium salt 1 (X = TfO) is an excellent catalyst for the cyanosilylation of methyl ketones promoted by trimethylsilyl cyanide and diphenylmethyl phosphine oxide as co-reactants (to generate Ph(2)MePOTMS(N=C:) as a reactive intermediate). The face selectivity of this reaction parallels that previously observed for the corresponding reaction of aldehydes. A unifying and rati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.10.015